Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4153, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378817

RESUMEN

In recent years groundwater contamination through nitrate contamination has increased rapidly in the managementof water research. In our study, fourteen nitrate conditioning factors were used, and multi-collinearity analysis is done. Among all variables, pH is crucial and ranked one, with a value of 0.77, which controls the nitrate concentration in the coastal aquifer in South 24 Parganas. The second important factor is Cl-, the value of which is 0.71. Other factors like-As, F-, EC and Mg2+ ranked third, fourth and fifth position, and their value are 0.69, 0.69, 0.67 and 0.55, respectively. Due to contaminated water, people of this district are suffering from several diseases like kidney damage (around 60%), liver (about 40%), low pressure due to salinity, fever, and headache. The applied method is for other regions to determine the nitrate concentration predictions and for the justifiable alterationof some management strategies.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Nitratos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , India , Agua/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-38372926

RESUMEN

The problem of desertification (DSF) is one of the most severe environmental disasters which influence the overall condition of the environment. In Rio de Janeiro Earth Summit on Environment and Development (1922), DSF is defined as arid, semi-arid, and dry sub-humid induced LD and that is adopted at the UNEP's Nairobi ad hoc meeting in 1977. It has been seen that there is no variability in the trend of long-term rainfall, but the change has been found in the variability of temperature (avg. temp. 0-5 °C). There is no proof that the air pollution brought on by CO2 and other warming gases is the cause of this rise, which seems to be partially caused by urbanization. The two types of driving factors in DSF-CC (climate change) along with anthropogenic influences-must be compared in order to work and take action to stop DSF from spreading. The proportional contributions of human activity and CC to DSF have been extensively evaluated in this work from "qualitative, semi-quantitative, and quantitative" perspectives. In this study, we have tried to connect the drives of desertification to desertification-induced migration due to loss of biodiversity and agriculture failure. The authors discovered that several of the issues from the earlier studies persisted. The policy-makers should follow the proper SLM (soil and land management) through using the land. The afforestation with social forestry and consciousness among the people can reduce the spreading of the desertification (Badapalli et al. 2023). The green wall is also playing an important role to reduce the desertification. For instance, it was clear that assessments were subjective; they could not be readily replicated, and they always relied on administrative areas rather than being taken and displayed in a continuous space. This research is trying to fulfill the mentioned research gap with the help of the existing literatures related to this field.

4.
Mar Pollut Bull ; 188: 114618, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682305

RESUMEN

An attempt has been adopted to predict the As and NO3- concentration in groundwater (GW) in fast-growing coastal Ramsar region in eastern India. This study is focused to evaluate the As and NO3- vulnerable areas of coastal belts of the Indo-Bangladesh Ramsar site a hydro-geostrategic region of the world by using advanced ensemble ML techniques including NB-RF, NB-SVM and NB-Bagging. A total of 199 samples were collected from the entire study area for utilizing the 12 GWQ conditioning factors. The predicted results are certified that NB-Bagging the most suitable and preferable model in this current research. The vulnerability of As and NO3- concentration shows that most of the areas are highly vulnerable to As and low to moderately vulnerable to NO3. The reliable findings of this present study will help the management authorities and policymakers in taking preventive measures in reducing the vulnerability of water resources and corresponding health risks.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Arsénico/análisis , Bangladesh , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
5.
J Environ Manage ; 330: 117187, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610196

RESUMEN

On a first-order basis, the global "sea level rise" induced by climate change magnifies coastal land subsidence. Various research related to this discipline is associated with estimated sea level vulnerability in various spatial scales. But the potential impact of climate change on sea level rise and its amalgamated vulnerability to the species remain undiscovered with appropriate procedures. So, in this perspective, our main objective of this research is to estimate the potential impact of climate change on sea level rise and it is associated with vulnerability to coastal habitat. From this research, it is established that the increasing tendency of sea level from the base period to the projected period. The major port city of India has been considered in this research. The qualitative "coastal vulnerability index (CVI)" is based on quantitative estimates to characterize the physical setting, including "geomorphology (G), sea level change (SLC), coastal slope (CS), relative sea-level change (RSLC), mean wave height (MWH), mean tide range (MTR), shoreline change rate (SCR), land use and human activities (LU), and population (P)". The projected sea level rise (SLR) is increasing at the highest rate under the higher RCP (Representative Concentrations Pathways) scenario. This information is very helpful to the decision maker for considering the most appropriate development strategies to maintain the sustainable development of coastal ecology in India.


Asunto(s)
Cambio Climático , Elevación del Nivel del Mar , Ecosistema , Políticas , Humedales
6.
Soft comput ; 27(6): 3367-3388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34276248

RESUMEN

The COVID-19 pandemic enforced nationwide lockdown, which has restricted human activities from March 24 to May 3, 2020, resulted in an improved air quality across India. The present research investigates the connection between COVID-19 pandemic-imposed lockdown and its relation to the present air quality in India; besides, relationship between climate variables and daily new affected cases of Coronavirus and mortality in India during the this period has also been examined. The selected seven air quality pollutant parameters (PM10, PM2.5, CO, NO2, SO2, NH3, and O3) at 223 monitoring stations and temperature recorded in New Delhi were used to investigate the spatial pattern of air quality throughout the lockdown. The results showed that the air quality has improved across the country and average temperature and maximum temperature were connected to the outbreak of the COVID-19 pandemic. This outcomes indicates that there is no such relation between climatic parameters and outbreak and its associated mortality. This study will assist the policy maker, researcher, urban planner, and health expert to make suitable strategies against the spreading of COVID-19 in India and abroad. Supplementary Information: The online version contains supplementary material available at 10.1007/s00500-021-06012-9.

7.
Environ Pollut ; 314: 120203, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150620

RESUMEN

One of the fundamental sustainable development goals has been recognized as having access to clean water for drinking purposes. In the Anthropocene era, rapid urbanization put further stress on water resources, and associated groundwater contamination expanded into a significant global environmental issue. Natural arsenic and related water pollution have already caused a burden issue on groundwater vulnerability and corresponding health hazard in and around the Ganges delta. A field based hydrogeochemical analysis has been carried out in the elevated arsenic prone areas of moribund Ganges delta, West Bengal, a part of western Ganga- Brahmaputra delta (GBD). New data driven heuristic algorithms are rarely used in groundwater vulnerability studies, specifically not yet used in the elevated arsenic prone areas of Ganges delta, India. Therefore, in the current study, emphasis has been given on integration of heuristic algorithms and random forest (RF) i.e., "RF-particle swarm optimization (PSO)", "RF-grey wolf optimizer (GWO)" and "RF-grasshopper optimization algorithm (GOA)", to identify groundwater vulnerable zones on the basis of field based hydrogeochemical parameters. In addition, correspondence health hazard of this area was assessed through human health hazard index. The spatial distribution of groundwater vulnerability revealed that middle-eastern and north-western part of the study area covered by very high and high, whereas central, western and south-western part are covered by very low and low vulnerability zones in outcomes of all the applied models. The evaluation result indicates that RF-GOA (AUC = 0.911) model performed the best considering testing dataset, and thereafter RF-GWO, RF-PSO and RF with AUC value is 0.901, 0.892 and 0.812 respectively. Findings also revealed the groundwater in this study region is quite unfavorable for drinking and irrigation purposes. The suggested models demonstrate their usefulness in foretelling sustainable groundwater resource management in various deltaic regions of the world through taking appropriate measures by policy-makers.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Arsénico/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Algoritmos , Agua/análisis , India
8.
Mar Pollut Bull ; 184: 114107, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36103734

RESUMEN

A limnological site is significantly characterized by rich biological, chemical, and physical properties of the environment and is also described as the epitome of a large aquatic ecosystem. During the last few decades, the Chilka lake Ramsar site has experienced substantial degradation of water quality with associated deterioration of aquatic biodiversity. Our study aims to quantify the VWRM of the Chilka lake Ramsar region using the most reliable MLAs, namely ANN and RF, with the help of seventeen hydro-chemical properties of lake water. The produced map is validated through six validating measures (ROC-AUC- 0.89, Sensitivity-0.90, Specificity-0.78, PPV-0.78, NPV-0.88, Taylor diagram (r)-0.94), which depict that ANN is the most reliable ML algorithm in assessing the VWRM of the concerned region followed by RF. The prepared map of our study revealed that the eastern part was remarkably high to very high vulnerable zone covered area with 22.41 % and 7.19 %, respectively.


Asunto(s)
Lagos , Recursos Hídricos , Ecosistema , Monitoreo del Ambiente , India
9.
Sci Total Environ ; 849: 157850, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35934024

RESUMEN

The problem of drought in India is a major issue in terms of various adverse impacts on livelihood of society. Drought Early Warning System (DEWS), a real-time drought-monitoring tool, has reported that over a fifth of India's geographical area (21.06 %) is suffering drought-like situations. This is 62 % larger than the drought-affected area during the same period last year, which was 7.86 %. Drought affects 21.06 %, with conditions ranging from unusually dry to extremely dry. While 1.63 % and 1.73 % of the area are experiencing 'extreme' or 'exceptional' dry conditions, 2.17 % is experiencing 'severe' dry conditions. Under 'moderate' dry circumstances, up to 8.15 % is possible. In this perspective groundwater vulnerability assessment in the overall country is needed for implementing the sustainable and long-term strategies for escaping from this type of hazardous situation. The main objective of this study is to estimate the drought vulnerability in changing climate which eventually influences the food security of India. The groundwater overdraft is one of the crucial elements in agricultural drought vulnerability. Various related parameters have been selected for estimating the drought vulnerability and its impact to food security in India. Here, MaxEnt (maximum entropy) and ANN (analytical neural network) has been considered in this perspective. The AUC values for the training datasets in the ANN and MaxEnt model are 0.891 and 0.921, respectively. The AUC values in ANN and MaxEnt model for the validation datasets are 0.876 and 0.904, respectively. Here MaxEnt model is most optimal than ANN considering predictive accuracy. From this study analysis it is established that western, south and middle portion of country is very much prone to drought vulnerability. So, special emphases in terms of the regional planning have to be taken into consideration for sustainable planning.


Asunto(s)
Sequías , Agua Subterránea , Cambio Climático , Seguridad Alimentaria , India , Políticas , Medidas de Seguridad
10.
Geosci Front ; 13(6): 101368, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37521133

RESUMEN

COVID-19 pandemic has forced to lockdown entire India starting from 24th March 2020 to 14th April 2020 (first phase), extended up to 3rd May 2020 (second phase), and further extended up to 17th May 2020 (third phase) with limited relaxation in non-hotspot areas. This strict lockdown has severely curtailed human activity across India. Here, aerosol concentrations of particular matters (PM) i.e., PM10, PM2.5, carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), ammonia (NH3) and ozone (O3), and associated temperature fluctuation in four megacities (Delhi, Mumbai, Kolkata, and Chennai) from different regions of India were investigated. In this pandemic period, air temperature of Delhi, Kolkata, Mumbai and Chennai has decreased about 3 °C, 2.5 °C, 2 °C and 2 °C respectively. Compared to previous years and pre-lockdown period, air pollutants level and aerosol concentration (-41.91%, -37.13%, -54.94% and -46.79% respectively for Delhi, Mumbai, Kolkata and Chennai) in these four megacities has improved drastically during this lockdown period. Emission of PM2.5 has experienced the highest decrease in these megacities, which directly shows the positive impact of restricted vehicular movement. Restricted emissions produce encouraging results in terms of urban air quality and temperature, which may encourage policymakers to consider it in terms of environmental sustainability.

11.
Stoch Environ Res Risk Assess ; 36(1): 283-295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33846679

RESUMEN

The long-term lockdown due to COVID-19 has beneficial impact on the natural environment. India has enforced a lockdown on 24th March 2020 and was subsequently extended in various phases. The lockdown due to the sudden spurt of the COVID-19 pandemic has shown a significant decline in concentration of air pollutants across India. The present article dealt with scenarios of air quality concentration of air pollutants, and effect on climatic variability during the COVID-19 lockdown period in Kolkata Metropolitan Area, India. The result showed that the air pollutants are significantly reduced and the air quality index (AQI) was improved during the lockdown months. Aerosol concentrations decreased by - 54.94% from the period of pre-lockdown. The major air pollutants like particulate matters (PM2.5, PM10), sulphur dioxide (SO2), carbon monoxide (CO) and Ozone (O3) were observed the maximum reduction ( - 40 to - 60%) in the COVID-19 lockdown period. The AQI has been improved by 54.94% in the lockdown period. On the other hand, Sen's slope rank and the Mann-Kendal trend test showed the daily decreased of air pollutants rate is - 0.051 to - 1.586 µg /m3. The increasing trend of daily minimum, average, and maximum temperature from the month of March to May in this year (2020s) are 0.091, 0.118, and 0.106 °C which is lowest than the 2016s to 2019s trend. Therefore, this research has an enormous opportunity to explain the effects of the lockdown on air quality and climate variability, and it can also be helpful for policymakers and decision-makers to enact appropriate measures to control air pollution.

12.
J Environ Manage ; 305: 114317, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954685

RESUMEN

The main objective of this work is the future prediction of the floods in India due to climate and land change. Human activity and related carbon emissions are the primary cause of land use and climate change, which has a substantial impact on extreme weather conditions, such as floods. This study presents high-resolution flood susceptibility maps of different future periods (up to 2100) using a combination of remote sensing data and GIS modelling. To quantify the future flood susceptibility various flood causative factors, Global circulation model (GCM) rainfall and land use and land cover (LULC) data are envisaged. The present flood susceptibility model has been evaluated through receiver operating characteristic (ROC) curve, where area under curve (AUC) value shows the 91.57% accuracy of this flood susceptibility model and it can be used for future flood susceptibility modelling. Based on the projected LULC, rainfall and flood susceptibility, the results of the study indicating maximum monthly rainfall will increase by approximately 40-50 mm in 2100, while the conversion of natural vegetation to agricultural and built-up land is about 0.071 million sq. km. and the severe flood event area will increase by up to 122% (0.15 million sq. km) from now on.


Asunto(s)
Cambio Climático , Inundaciones , Predicción , Humanos , India , Curva ROC
13.
Sci Total Environ ; 801: 149811, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34467937

RESUMEN

This study aims to construct a novel framework approach for predicting and mapping nitrate concentration susceptibility in the coastal multi-aquifers of Bangladesh by coupling the K-fold cross-validation method and novel ensemble learning algorithms, including Boosting, Bagging and Random Forest (RF). In total, 286 nitrate sampling sites were employed in the model work. The dataset was demarcated into a 75:25 ratio for model construction (75% 3-fold â‰… 214 sites) and (25% 1-fold â‰… 72 sites) for model validation using the 4-fold cross-validation schemes. A total of 14 groundwater causative factors including salinity, depth, pH, EC, As, HCO3-, F-, Cl-, SO42-, PO42-, Na+, K+, Mg2+, and Ca2+ were adopted for the construction of the proposed models. OneR relative importance model was employed to choose and rank critical factors for spatial nitrate modeling. The results showed that depth, pH and As are the most influential causative factors in the elevated nitrate concentration in groundwater. Based on the model assessment criteria such as receiver operating characteristic (ROC)'s AUC (area under curve), sensitivity, specificity, accuracy, precession, F score, and Kappa coefficient, the Boosting model outperforms others (r = 0.92, AUG ≥ 0.90) in mapping nitrate concentration susceptibility, followed by Bagging and RF models. The results of mapping nitrate concentration also demonstrated that the south-central and western regions had an elevated amount of nitrate content than other regions due to depth variation in the study area. During our sampling campaign, we observed hundreds of fish hatcheries operation, a fish landing center and aquaculture farms which are the reasons for overexploitation and excessive agrochemicals used in the study area. Thus, the dependability of ensemble learning modeling verifies the effectiveness and applicability of the proposed novel approach for decision-makers in groundwater pollution management at the local and regional levels.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Bangladesh , Monitoreo del Ambiente , Nitratos/análisis , Salinidad , Contaminantes Químicos del Agua/análisis
14.
J Environ Manage ; 298: 113551, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34435571

RESUMEN

The predicts current and future flood risk in the Kalvan watershed of northwestern Markazi Province, Iran. To do this, 512 flood and non-flood locations were identified and mapped. Twenty flood-risk factors were selected to model flood risk using several machine learning techniques: conditional inference random forest (CIRF), the gradient boosting model (GBM), extreme gradient boosting (XGB) and their ensembles. To investigate the future (year 2050) effects of changing climates and changing land use on future flood risk, a general circulation model (GCM) with representative concentration pathways (RCPs) of the 2.6 and 8.5 scenarios by 2050 was tested for impacts on 8 precipitation variables. In addition, future land uses in 2050 was prepared using a CA-Markov model. The performances of the flood risk models were validated with Receiver Operating Characteristic-Area Under Curve (ROC-AUC) and other statistical analyses. The AUC value of the ROC curve indicates that the ensemble model had the highest predictive power (AUC = 0.83) and was followed by GBM (AUC = 0.80), XGB (AUC = 0.79), and CIRF (AUC = 0.78). The results of climate and land use changes on future flood-prone areas showed that the areas classified as having moderate to very high flood risk will increase by 2050. Due to the changes occurring with land uses and in climates, the area classified as moderate to very high risk increased in the predictions from all four models. The areal proportion classes of the risk zones in 2050 under the RCP 2.6 scenario using the ensemble model have changed of the following proportions from the current distribution Very Low = -12.04 %, Low = -8.56 %, Moderate = +1.56 %, High = +11.55 %, and Very High = +7.49 %. The RCP 8.5 scenario has caused the following changes from the present percentages: Very Low = -14.48 %, Low = -6.35 %, Moderate = +4.54 %, High = +10.61 %, and Very High = +5.67 %. The results of current and future flood risk mapping can aid planners and flood hazard managers in their efforts to mitigate impacts.


Asunto(s)
Inundaciones , Aprendizaje Automático , Clima , Predicción , Curva ROC
15.
J Environ Manage ; 287: 112284, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711662

RESUMEN

Water dominated gullies formation and associated land degradation are the foremost challenges among the planners for sustainability and optimization of land resources. This type of hazardous phenomenon is utmost vulnerable due to huge loss of surface soil in the sub-tropical developing countries like India. The present study has been carried out in rugged badland topography of Garhbeta-I Community Development (C.D.) Block in eastern India for assessing the gully erosion susceptibility (GES) mapping and optimization of land use planning. The GES mapping is the first and foremost steps towards minimization this adverse affect and attaining sustainable development. In this study we also describe the importance of plantation and alternation of ex-situ tree species with in-situ species for minimizes the erosional activity. To meet our research goal here we used two prediction based machine learning algorithm (MLA) namely random forest (RF) and boosted regression tree (BRT) and one optimization model of Ecogeography based optimization (EBO). The research study also carried out by using a total of 199, in which 139 (70%) and 60 (30%) gully head-cut points were used for training and validation purposes respectively and treated as dependent factors, and twenty gully erosion conditioning factors as independent variables. These models are validated through receiver operating characteristics-area under the curve (ROC-AUC), accuracy (ACC), precision (PRE) and Kappa coefficient index analysis. The validation result showed that EBO model with the highest values of AUC-0.954, ACC-0.85, PRE-0.877 and Kappa-0.646 is the most accurate model for GES followed by BRT and RF. The outcome results should help for the sustainable development of this rugged badland topography.


Asunto(s)
Conservación de los Recursos Naturales , Sistemas de Información Geográfica , India , Aprendizaje Automático , Suelo
16.
J Environ Manage ; 284: 112067, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556831

RESUMEN

Land subsidence (LS) in arid and semi-arid areas, such as Iran, is a significant threat to sustainable land management. The purpose of this study is to predict the LS distribution by generating land subsidence susceptibility models (LSSMs) for the Shahroud plain in Iran using three different multi-criteria decision making (MCDM) and five different artificial intelligence (AI) models. The MCDM models we used are the VlseKriterijumska Optimizacija IKompromisno Resenje (VIKOR), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Complex Proportional Assessment (COPRAS), and the AI models are the extreme gradient boosting (XGBoost), Cubist, Elasticnet, Bayesian multivariate adaptive regression spline (BMARS) and conditional random forest (Cforest) methods. We used the Receiver Operating Characteristic (ROC) curve, Area Under Curve (AUC) and different statistical indices,i.e. accuracy, sensitivity, specificity, F score, Kappa, Mean Absolute Error (MAE) and Nash-Sutcliffe Criteria (NSC)to validate and evaluate the methods. Based on the different validation techniques, the Cforest method yielded the best results with minimum and maximum values of 0.04 and 0.99, respectively. According to the Cforest model, 30.55% of the study area is extremely vulnerable to land subsidence. The results of our research will be of great help to planners and policy makers in the identification of the most vulnerable regions and the implementation of appropriate development strategies in this area.


Asunto(s)
Inteligencia Artificial , Teorema de Bayes , Irán , Curva ROC
17.
Environ Dev Sustain ; 23(6): 9581-9608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33110388

RESUMEN

The COVID-19 pandemic forced India as a whole to lockdown from 24 March 2020 to 14 April 2020 (first phase), extended to 3 May 2020 (second phase) and further extended to 17 May 2020 (third phase) and 31 May 2020 (fourth phase) with only some limited relaxation in non-hot spot areas. This lockdown has strictly controlled human activities in the entire India. Although this long lockdown has had a serious impact on the social and economic fronts, it has many positive impacts on environment. During this lockdown phase, a drastic fall in emissions of major pollutants has been observed throughout all the parts of India. Therefore, in this research study we have tried to establish a relationship among the fall in emission of pollutants and their impact on reducing regional temperature. This analysis was tested through the application of Mann-Kendall and Sen's slope statistical index with air quality index and temperature data for several stations across the country, during the lockdown period. After the analysis, it has been observed that daily emissions of pollutants (PM10, PM2.5, CO, NO2, SO2 and NH3) decreased by - 1- - 2%, allowing to reduce the average daily temperature by 0.3 °C compared with the year of 2019. Moreover, this lockdown period reduces overall emissions of pollutants by - 51- - 72% on an average and hence decreases the average monthly temperature by 2 °C. The same findings have been found in the four megacities in India, i.e., Delhi, Kolkata, Mumbai and Chennai; the rate of temperature fall in the aforementioned megacities is close to 3 °C, 2.5 °C, 2 °C and 2 °C, respectively. It is a clear indicator that a major change occurs in air quality, and as a result it reduced lower atmospheric temperature due to the effect of lockdown. It is also a clear indicator that a major change in air quality and favorable temperature can be expected if the strict implementations of several pollution management measures have been implemented by the concern authority in the coming years.

18.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053663

RESUMEN

Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.

19.
Sci Total Environ ; 747: 141321, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32771791

RESUMEN

The outbreak of COVID-19 has now created the largest pandemic and the World health organization (WHO) has declared social distancing as the key precaution to confront such type of infections. Most of the countries have taken protective measures by the nationwide lockdown. The purpose of this study is to understand the effect of lockdown on air pollutants and to analyze pre-monsoon (April and May) cloud-to-ground and inter-cloud lightning activity in relation to air pollutants i.e. suspended Particulate matter (PM10), Nitrogen dioxides (NO2) Sulfur dioxide (SO2), Ozone (O3) and Aerosol concentration (AC) in a polluted tropical urban megacities like Kolkata. After the strict lockdown the pollutants rate has reduced by more than 40% from the pre-lockdown period in the Kolkata megacity. So, decreases of PM10, NO2, SO2, O3 and AC have a greater effect on cloud lightning flashes in the pre-monsoon period. In the previous year (2019), the pre-monsoon average result shows a strong positive relation between the lightning and air pollutants; PM10 (R2 = 0.63), NO2 (R2 = 0.63), SO2 (R2 = 0.76), O3 (R2 = 0.68) and AC (R2 = 0.83). The association was relatively low during the lock-down period (pre-monsoon 2020) and the R2 values were 0.62, 0.60, 0.71, 0.64 and 0.80 respectively. Another thing is that the pre-monsoon (2020) lightning strikes decreased by 49.16% compared to the average of previous years (2010 to 2019). The overall study shows that the reduction of surface pollution in the thunderstorm environment is strongly related to the reduction of lightning activity where PM10 and AC are the key pollutants in the Kolkata megacity.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infecciones por Coronavirus , Relámpago , Ozono , Pandemias , Neumonía Viral , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Betacoronavirus , COVID-19 , Humanos , India , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , SARS-CoV-2 , Dióxido de Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...